Sphingomyelin synthase-related protein SMSr is a suppressor of ceramide-induced mitochondrial apoptosis.

نویسندگان

  • Fikadu G Tafesse
  • Ana M Vacaru
  • Elleke F Bosma
  • Martin Hermansson
  • Amrita Jain
  • Angelika Hilderink
  • Pentti Somerharju
  • Joost C M Holthuis
چکیده

Cells synthesize ceramides in the endoplasmic reticulum (ER) as precursors for sphingolipids to form an impermeable plasma membrane. As ceramides are engaged in apoptotic pathways, cells would need to monitor their levels closely to avoid killing themselves during sphingolipid biosynthesis. How this is accomplished remains to be established. Here we identify SMSr (SAMD8), an ER-resident ceramide phosphoethanolamine (CPE) synthase, as a suppressor of ceramide-mediated cell death. Disruption of SMSr catalytic activity causes a rise in ER ceramides and their mislocalization to mitochondria, triggering a mitochondrial pathway of apoptosis. Blocking de novo ceramide synthesis, stimulating ceramide export from the ER or targeting a bacterial ceramidase to mitochondria rescues SMSr-deficient cells from apoptosis. We also show that SMSr-catalyzed CPE production, although essential, is not sufficient to suppress ceramide-induced cell death and that SMSr-mediated ceramide homeostasis requires the N-terminal sterile α-motif, or SAM domain, of the enzyme. These results define ER ceramides as bona fide transducers of mitochondrial apoptosis and indicate a primary role of SMSr in monitoring ER ceramide levels to prevent inappropriate cell death during sphingolipid biosynthesis.

منابع مشابه

All members in the sphingomyelin synthase gene family have ceramide phosphoethanolamine synthase activity.

Sphingomyelin synthase-related protein (SMSr) synthesizes the sphingomyelin analog ceramide phosphoethanolamine (CPE) in cells. Previous cell studies indicated that SMSr is involved in ceramide homeostasis and is crucial for cell function. To further examine SMSr function in vivo, we generated Smsr KO mice that were fertile and had no obvious phenotypic alterations. Quantitative MS analyses of ...

متن کامل

Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER

Ceramides are central intermediates of sphingolipid metabolism with critical functions in cell organization and survival. They are synthesized on the cytosolic surface of the endoplasmic reticulum (ER) and transported by ceramide transfer protein to the Golgi for conversion to sphingomyelin (SM) by SM synthase SMS1. In this study, we report the identification of an SMS1-related (SMSr) enzyme, w...

متن کامل

Ceramide phosphoethanolamine synthase SMSr is a target of caspase-6 during apoptotic cell death

Ceramides are essential precursors of sphingolipids with a dual role as mediators of apoptotic cell death. Previous work revealed that the ER-resident ceramide phosphoethanolamine (CPE) synthase SMSr/SAMD8 is a suppressor of ceramide-mediated apoptosis in cultured cells. Anti-apoptotic activity of SMSr requires a catalytically active enzyme but also relies on the enzyme's N-terminal sterile α-m...

متن کامل

ER residency of the ceramide phosphoethanolamine synthase SMSr relies on homotypic oligomerization mediated by its SAM domain

SMSr/SAMD8 is an ER-resident ceramide phosphoethanolamine synthase with a critical role in controlling ER ceramides and suppressing ceramide-induced apoptosis in cultured cells. SMSr-mediated ceramide homeostasis relies on the enzyme's catalytic activity as well as on its N-terminal sterile α-motif or SAM domain. Here we report that SMSr-SAM is structurally and functionally related to the SAM d...

متن کامل

Ceramide biogenesis is required for radiation-induced apoptosis in the germ line of C. elegans.

Ceramide engagement in apoptotic pathways has been a topic of controversy. To address this controversy, we tested loss-of-function (lf) mutants of conserved genes of sphingolipid metabolism in Caenorhabditis elegans. Although somatic (developmental) apoptosis was unaffected, ionizing radiation-induced apoptosis of germ cells was obliterated upon inactivation of ceramide synthase and restored up...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Journal of cell science

دوره 127 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2014